[1]刘树聃,陈知行.奇异值分解和EEMD的非线性振动信号降噪方法[J].ag亚游ag8|官方,2019,41(03):37.[doi:.]
 LIU Shudan,CHEN Zhixing.Nonlinear Vibration Signal De-noising Based on Singular Value Decomposition and EEMD[J].,2019,41(03):37.[doi:.]
点击复制

奇异值分解和EEMD的非线性振动信号降噪方法()
分享到:

《ag亚游ag8|官方》[ISSN:1008-1194/CN:61-1316/TJ]

卷:
41
期数:
2019年03
页码:
37
栏目:
出版日期:
2019-06-24

文章信息/Info

Title:
Nonlinear Vibration Signal De-noising Based on Singular Value Decomposition and EEMD
文章编号:
1008-1194(2019)03-0037-06
作者:
刘树聃1;?2;?陈知行3
1.许昌市耕新信息科学研究院,河南 许昌 461000;2.许昌职业技术学院航空工程学院,河南 许昌 461000;3.北京理工大学自动化学院, 北京 100081
Author(s):
LIU Shudan1;?2;?CHEN Zhixing3
1. Xuchang Gengxin Information Science Research Institute, Xuchang 461000,China; 2. Aviation Engineering Institute,Xuchang Vocational Technical College, Xuchang 461000,China; 3. School of Automation, Beijing Institute of Technology, Beijing 100081,China
关键词:
非线性振动信号;?奇异值分解;?集合经验模态分解;?降噪
Keywords:
nonlinear vibration signal;? SVD;? EEMD;? de-noising
分类号:
O322;TN911.7
DOI:
.
文献标志码:
A
摘要:
针对传统方法难以有效将非线性振动信号从复杂强干扰中提取的难题,提出了奇异值分解(SVD)和集合经验模态分解(EEMD)的降噪方法。该方法利用EEMD叠加白噪声预处理的过程,抑制脉冲噪声的影响并克服了EMD模式混叠效应,然后提取信号的趋势项,克服了信号趋势项对SVD选择奇异值的影响,最后将SVD方法降噪后的信号与趋势项叠加达到降噪目的,实现SVD和EEMD的优势互补,提高降噪效果。对模拟信号和实测非线性振动信号进行了仿真试验研究,结果表明,该方法可以同时有效地抑制非线性振动信号中的白噪声和脉冲噪声,对工程实际信号的进一步分析处理提供有效的预处理手段。
Abstract:
In order to extract nonlinear vibration signals from complex strong interference effectively, a de-noising method based on singular value decomposition and ensemble empirical mode decomposition was proposed. Firstly, the superposing white noise process of EEMD was used to suppress the impulse noise and pattern aliasing effect of EMD. Then the trend of the signal was extracted to overcome the problem of hard to select the singular value. Finally, the de-noised signal based on SVD and the trend were rebuilt to realize the purpose of noise reduction. The proposed method realized the complementary advantages of SVD and EEMD and improve the effect of noise reduction. The simulation and measured nonlinear vibration signals were simulated and studied. The results show that the proposed method could suppress the white noise and impulse noise in nonlinear vibration signals effectively, and lay a foundation for further analysis and processing of actual engineering signals.

参考文献/References:

[1]张赟,李本威.基于最大方差展开的非线性信号降噪方法及其在故障诊断中的应用[J].中国科学:技术科学,2010,40(8):940-945.
[2]宋佳星, 雷祺, 方向,等.基于小波的装甲声信号特征分析及滤波方法[J].ag亚游ag8|官方, 2017, 39(4):61-66.
[3]BOUDRAA A O,CEXUS J C.De-noising via empirical mode decomposition[C]//Proceedings of the IEEE International Symposium on Control Communications and Signal Processing.Marrakech,Morocco:IEEE,2006:4-8.
[4]柏林,刘小峰,秦树人.小波-形态-EMD综合分析法及其应用[J].振动与冲击,2008,27(5):1-4.
[5]陈仁祥,汤宝平,马靖华.基于EEMD的振动信号自适应降噪方法[J].振动与冲击,2012,31(15):82-86.
[6]Wu Z,Huang N E.A study of the characteristics of white noise using the empirical mode decomposition method[J].Proc.R.London A,2004,460:1597-1611.
[7]雷达,钟师胜.基于奇异值分解和经验模态分解的航空发动机健康信号降噪[J].吉林大学学报(工学版),2013,43(3):764-770.
[8]行鸿彦,朱清清.基于集成经验模态分解的海杂波去噪[J].电子学报,2016,44(1):1-6.
[9]张绪景,雷晓燕,刘庆杰.基于小波包与改进EMD的轮轨力信号降噪[J].噪声与振动控制,2016,36(5):104-107.
[10]张波,李健君.基于Hankel矩阵与奇异值分解(SVD)的滤波方法以及在飞机颤振试验数据预处理中的应用[J].振动与冲击,2009,28(2):162-166.
[11]Zhao X Z, Ye B Y.Selection of effective singular values using difference spectrum and its application to fault diagnosis of headstock[J].Mechanical Systems and Signal Processing, 2011,25(5):1617-1631.
[12]刘树勇,位秀雷,许师凯,等.非线性混沌振动响应的试验分析[J].噪声与振动控制,2014,34(2):5-7.
[13]刘云侠,杨国诗,贾群.基于双提升小波的自适应混沌信号降噪[J].电子学报,2011,39(1):13-17.

相似文献/References:

[1]庞学亮,林春生,张宁.飞机磁场模型系数的截断奇异值分解法估计[J].ag亚游ag8|官方,2009,(05):48.
 PANG Xue-liang,LIN Chun-sheng,ZHANG Ning.Parameter Estimation of Airplane Magnetic Model Based on TSVD[J].,2009,(03):48.
[2]黄光明,余刚,李和平.基于奇异值分解的秩截短多站时差定位算法[J].ag亚游ag8|官方,2010,(03):74.
 HUANG Guangming,YU Gang,LI Heping.Rank-truncated Multi-station TDOA Localization Algorithm Based on Singular Value Decomposition[J].,2010,(03):74.
[3]周峰,焦淑红,孔挺.基于奇异值分解的改进机载单站无源定位算法[J].ag亚游ag8|官方,2011,(03):19.
 ZHOU Feng,JIAO Shuhong,KONG Ting.An Improved Algorithm of Single Airborne Observer Passive Location Based on SVD[J].,2011,(03):19.

备注/Memo

备注/Memo:
收稿日期:2018-11-26
基金项目:北京市自然科学基金项目资助(1183027);河南省教改重点项目资助([2015]061号)
作者简介:刘树聃(1974—),女,河南许昌人,硕士,副教授,研究方向:计算机应用技术。E-mail:xctax@163.com。
更新日期/Last Update: 2019-07-11